Research on the mechanical properties of minefill: influences of material particle size, chemical and mineral composition, binder and mixing water

H. SAW and E. VILLAESCUSA

Western Australian School of Mines, Kalgoorlie, Australia

Minefill is the material placed underground to fill the voids created by mining excavations. It provides overall large scale ground stabilization while allowing localized pillar recovery. In addition to providing a working floor or back, minefill has the potential to reduce subsidence and minimize dilution. Minefill is essential to cut and fill, benching and sublevel stoping mining methods. This paper describes optimization research carried out at the Western Australian School of Mines (WASM) over the last few years. The research included cemented paste fill (CPF), cemented hydraulic fill (CHF) and cemented aggregates/rock fill (CAF/CRF) optimization projects for a number of mines throughout Australia and overseas. The studies included composition of different mix designs to achieve the required strength at different mining stages. The paper also summarizes key experimental observations, typical results and recommendation for CPF, CHF, CAF and CRF. The physical properties of different types of tailings, binder, mixing water and their influences on the physical and mechanical properties of minefill at different curing times, temperature and humidity are presented.

Keywords: Mining methods, minefill, optimization, cemented paste fill, cemented hydraulic fill, cemented aggregate fill, physical properties, mechanical properties.
20 micron (0.02 mm) for CPF and 10% passing 10 microns (0.01 mm) for CHF. In addition, to get a better understanding of the likely behaviour, the tailings can be further classified using the Unified Soil Classification System for engineering purposes. Figure 2 shows the typical PSD curves for different types of tailings and natural tuff plotted on Australian Standard particle size limit: AS1289.3.6.1-1995. Figure 3 shows the percentage of particle size contained in the different types tailings and natural tuff tested. According to the Unified Soil Classification System, Figures 2 and 3 suggest that most of the tailings from the Australia mines can be classified as sandy silt (ML). The assumed plasticity index is less than (4), and therefore, some engineering properties of a fresh CPF or CHF mixes may be similar to those of natural sandy silt soil.

Waste rock

Waste rock from underground mine development is often used as a material for minefill. This is known as aggregate or rock fill. The waste rock is crushed down to a size ranging from less than 20 mm to larger 300 mm. Typical PSD curves of waste rock are shown in Figure 4. It can be seen that the PSD curves of the waste rock are outside the limit suggested by ‘ASTM C33-08 – Required limit of 1.75 to 37.5 mm graded aggregate for concrete’.

Weight-volume relationship

The weigh-volume relationship of minefill is determined by its porosity, void ratio and relative density. In practice, the specific gravity (SG) of the solid constituents in tailings or rock is used. The typical SG of tailings investigated are shown in Figure 5. Another important index property is the minefill mix water content. A variation in water content determination can be a major problem while trying to achieve a required mix design. In geotechnical engineering practice, the water content is defined as:

\[ w (\%) = \frac{100W_w}{W_s} \]  

where:

\( w \) (\%) = Water content  
\( W_w \) = Weight of water  
\( W_s \) = Weight of oven-dry solid matter

Peck et al. suggested that the weight of water is referred to the unchanging quantity of \( W_s \) rather than to the total weight of the sample. It is important to compare the water content of a sample, which is oven dried at a standard temperature. The standard temperature is 105 to 115 °C. As the temperature increases, the sample continues to lose the water content until the mineral or chemical that constitutes the sample break down.

Chemistry and mineralogy

The chemistry and mineralogy of the tailings influence many physical and mechanical properties of a minefill. The analysis results are complex due to the grinding, as this can
break down the crystal structure of some minerals present and cause difficulties during the identification of the minerals. Table I shows a typical mineral composition of tailings and natural tuff using X-ray diffraction (XRD) method. The results show that, the tailings mainly contain quartz, feldspar, mica, clay minerals, sulphide minerals and carbonate minerals. Some minerals are not favourable to the cement hydration. The presence of clay minerals (Chlorite, illite, and kaolin) and sulphide minerals (pyrite, pyrrhotite) would reduce the strength of minefill for a given cement type and dosage\textsuperscript{1,8}. On the other hand, the presence of carbonate minerals (calcite, dolomite) would increased the strength of the minefill for a given cement type and dosage\textsuperscript{9,10}.

Binders

Binder such as cement or natural pozzolans are the main substance for strength development in any types of minefill. It is also the most expensive input of the minefill mix. A choice of binder depends upon on the required strength and durability requirements of a particular minefill operation. The main component of the different types of cement and pozzolans were calculated according to Bogue\textsuperscript{11} suggestion using XRD scan results and shown in Figure 6.

The major components are tricalcium silicate (3CaO·SiO\textsubscript{2}) and dicalcium silicate (2CaO·SiO\textsubscript{2}). Both react with water to produce calcium silicate hydrate (C-S-H) and calcium hydroxide (CH). The strength development is due to the formation of C-S-H. Calcium hydroxide (CH) which can react with aggressive chemicals in tailings and saline water in some underground mines lowering the durability of minefill\textsuperscript{13}. Therefore, a cost-effective with optimum strength mix design can be achieved by selecting or blending the right binder for a given tailings and mixing water.

Mixing water

The mixing water has three main functions: (1) it reacts with the cement powder, thus producing hydration; (2) it acts as a lubricant, contributing to the workability the fresh mixture; and (3) it secures the necessary space in the paste for the development of hydration products\textsuperscript{12}. Research conducted by Lawrence\textsuperscript{13} (1992), Wang, et al.,\textsuperscript{14} (2001), Coxon, et al.,\textsuperscript{15} (2003), Benzaazoua et al.,\textsuperscript{16-17} (2002, 2004), showed that impurities in the mixing water can cause a strength reduction in any type of minefill. The impurities can either be dissolved or suspended in the water. The amount of strength reduction can change with the type of tailings and the binder dosage used. Table II shows a typical chemical composition of common mixing water.
used in minefill. It can be seen that the total dissolved solids (TDS) in process water ranges from 180 000 to 320 000 (mg/L). In certain cases, the contaminated water can be used for minefill purposes by mixing it with fresh water. However, it is important to determine whether the impurities may lead a strength reduction.

**Yield stress**

Yield stress is the stress at the limit of elastic behaviour describing the rheology of a paste fill. In other words, it is the minimum force required to initiate paste flow at almost zero shear rate. Understanding the relationship between the yield stress and the solids percentage is essential for a design of paste fill transportation system. A proper transportation system enables delivery of CPF from surface to underground at the highest solids percentage. A direct yield stress measurement with the vane shear method suggested by Nguyen and Boger was used in conjunction with Haake VT550 viscometer controlled by ‘Haake RheoWin 3’ software in all the CPF optimizations research conducted at WASM. The vane shear stress is calculated as uniformly distributed within the cylindrical sample. Yield stresses were measured immediately after mixing, i.e. about 5 to 10 minutes after binder and water contact. The vane was rotated with the shear rate of 0.5 rpm for 100 seconds and the stress were recorded during that period. The peak stress is reported as yield stress. Standard conical slump tests in accordance with Australian Standard AS 1012.3.1 were also conducted on different mixes. A typical yield stress, correlation with solids percentage and slump for different mixes are presented in Figures 7 and 8. A slightly different correlation was established for different mixes.

**Hydrogen cyanide (HCN) gas liberation**

Minefill made with cyanide-bearing tailings contains weak acid dissociable (WAD) cyanide and it is highly unstable and can emit volatile hydrogen cyanide (HCN) gas when sufficient hydrogen ion concentration occurs in the minefill. Therefore, determination of total cyanide, WAD cyanide and monitoring liberated HCN gas from the crushed CPF samples mixed with gold tailings and mine water was conducted by WASM through SGS Australia Pty Ltd. The results showed that those samples containing 1.5 to 2.0 mg/kg of WAD cyanide and the liberated HCN gas were less than 0.1 mg/kg in all samples. Generally, permeability of CPF in the underground is low and the amount of liberated HNC gas will be lower than that of crushed CPF samples monitored in the laboratory. Although a possibility exists for HCN gas liberation, the amount appears to be insignificant. A graphical presentation of WAD cyanide in crushed CPF samples with different cement dosage is shown in Figure 9.

<table>
<thead>
<tr>
<th>Chemical analysis</th>
<th>Bore water</th>
<th>Process water</th>
<th>Saline water 1</th>
<th>Saline water 2</th>
<th>Saline water 3</th>
<th>Saline water 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>8.1</td>
<td>7.8</td>
<td>6.9</td>
<td>6.8</td>
<td>6.7</td>
<td>6.7</td>
</tr>
<tr>
<td>Conductivity (us)</td>
<td>2 117</td>
<td>112</td>
<td>163</td>
<td>167</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Dissolved Solids (mg/L)</td>
<td>1 357</td>
<td>196 879</td>
<td>315 087</td>
<td>269 056</td>
<td>180 000</td>
<td>320 000</td>
</tr>
<tr>
<td>Total Suspended Solids (mg/L)</td>
<td>0</td>
<td>396</td>
<td>9 287</td>
<td>2 834</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total Alkalinity – CaCO3 (mg/L)</td>
<td>492</td>
<td>0</td>
<td>80</td>
<td>80</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Carbonate Alkalinity CO3²⁻ (mg/L)</td>
<td>-</td>
<td>-</td>
<td>48</td>
<td>48</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Bicarbonate Alkalinity HCO3⁻ (mg/L)</td>
<td>-</td>
<td>145</td>
<td>98</td>
<td>98</td>
<td>45</td>
<td>25</td>
</tr>
<tr>
<td>SO₄²⁻ (mg/L)</td>
<td>119</td>
<td>4 109</td>
<td>21 926</td>
<td>19 035</td>
<td>7 400</td>
<td>7 900</td>
</tr>
<tr>
<td>CT (mg/L)</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>190 000</td>
<td>200 000</td>
</tr>
<tr>
<td>Ca (ppm)</td>
<td>58</td>
<td>2 600</td>
<td>1 366</td>
<td>1 746</td>
<td>1 000</td>
<td>1 000</td>
</tr>
<tr>
<td>Fe (ppm)</td>
<td>0</td>
<td>-</td>
<td>261</td>
<td>87</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>K (ppm)</td>
<td>42</td>
<td>908</td>
<td>14 332</td>
<td>12 861</td>
<td>260</td>
<td>470</td>
</tr>
<tr>
<td>Mg (ppm)</td>
<td>51</td>
<td>3 530</td>
<td>12 427</td>
<td>10 474</td>
<td>3 300</td>
<td>3 600</td>
</tr>
<tr>
<td>Na (ppm)</td>
<td>337</td>
<td>60 900</td>
<td>75 870</td>
<td>65 296</td>
<td>140 000</td>
<td>120 000</td>
</tr>
</tbody>
</table>

![Figure 7 — Typical correlation between solids density and yield stress of different CPF mixes](image1)

![Figure 8 — Typical correlation between yield stress and slump of different CPF mixes](image2)
The required minefill strength is a function of the mining method, geometry of orebody and stope, and the possible failure modes. Mitchell and Roettger\(^2\) describe the potential failure modes of cemented minefill used to support the uncemented minefill in steeply dipping ore zones. Failure modes include sliding, crushing, flexural and caving. Sliding occurs due to low frictional resistance between the minefill and the rock wall. Crushing occurs when the reduced stress exceed the UCS of the fill mass. Flexural failure occurs when the fill mass has a low tensile strength, caving can be a result of arching, and rotational failure due to low shearing resistance at the rock wall.

When minefill is considered as a roof slab, the analysis methods developed by Evans\(^2\) and later modified by Beer and Meek\(^2\) can be applied. Such method for roof design procedure considering plane strain is described in Brady and Brown\(^3\). The mechanical properties for the design are usually determined by laboratory testing. The most common tests are uniaxial compressive strength (UCS) test and triaxial (unconsolidated undrained) test. The following sections briefly describe some of minefill strength optimization research recently carried out at WASM.

### Results for Mine A—cemented paste fill (lead-zinc-silver mine, Australia)

#### Mix design parameters
- **Fill material:** lead-zinc-silver tailings
- **Water:** metallurgical process water
- **Binder:** general purpose cement (GP)—A, B and C
- **General purpose (GP)/ fly ash (FA) blended cement—A, B and C
- **GB slag and Portland/slag blended cement
- **Calculated solid percentage:** 76–80%
- **Measured yield stress:** 76–496 Pa
- **Curing:** temperature 40°C and 90% humidity
- **Sample size:** 50 × 110 mm (diameter × length)

#### Table III

<table>
<thead>
<tr>
<th>Mix ID</th>
<th>GP cement (%)</th>
<th>Solids (%)</th>
<th>Yield stress (Pa)</th>
<th>Shump (mm)</th>
<th>1 day - UCS (kPa)</th>
<th>3 days - UCS (kPa)</th>
<th>7 days - UCS (kPa)</th>
<th>14 days - UCS (kPa)</th>
<th>28 days - UCS (kPa)</th>
<th>56 days - UCS (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>1.5</td>
<td>76.1</td>
<td>90</td>
<td>266</td>
<td>193</td>
<td>167</td>
<td>162</td>
<td>158</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-8</td>
<td>1.5</td>
<td>77.6</td>
<td>179</td>
<td>240</td>
<td>187</td>
<td>212</td>
<td>221</td>
<td>202</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-15</td>
<td>1.5</td>
<td>78.8</td>
<td>397</td>
<td>212</td>
<td>245</td>
<td>249</td>
<td>257</td>
<td>276</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-2</td>
<td>2</td>
<td>76.1</td>
<td>76</td>
<td>265</td>
<td>191</td>
<td>239</td>
<td>247</td>
<td>225</td>
<td>237</td>
<td></td>
</tr>
<tr>
<td>A-16</td>
<td>2</td>
<td>78.8</td>
<td>335</td>
<td>215</td>
<td>283</td>
<td>282</td>
<td>322</td>
<td>363</td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>A-9</td>
<td>2</td>
<td>79.0</td>
<td>428</td>
<td>213</td>
<td>253</td>
<td>283</td>
<td>329</td>
<td>343</td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>A-3</td>
<td>2.5</td>
<td>76.9</td>
<td>135</td>
<td>258</td>
<td>228</td>
<td>240</td>
<td>264</td>
<td>330</td>
<td>411</td>
<td>339</td>
</tr>
<tr>
<td>A-17</td>
<td>2.5</td>
<td>77.9</td>
<td>233</td>
<td>225</td>
<td>224</td>
<td>264</td>
<td>362</td>
<td>413</td>
<td>403</td>
<td>514</td>
</tr>
<tr>
<td>A-10</td>
<td>2.5</td>
<td>78.9</td>
<td>324</td>
<td>217</td>
<td>244</td>
<td>333</td>
<td>430</td>
<td>459</td>
<td>520</td>
<td>450</td>
</tr>
<tr>
<td>A-18</td>
<td>3</td>
<td>76.7</td>
<td>131</td>
<td>252</td>
<td>225</td>
<td>271</td>
<td>463</td>
<td>478</td>
<td>583</td>
<td>465</td>
</tr>
<tr>
<td>A-4</td>
<td>3</td>
<td>76.9</td>
<td>135</td>
<td>249</td>
<td>218</td>
<td>268</td>
<td>318</td>
<td>415</td>
<td>407</td>
<td>450</td>
</tr>
<tr>
<td>A-11</td>
<td>3</td>
<td>78.3</td>
<td>296</td>
<td>226</td>
<td>265</td>
<td>391</td>
<td>450</td>
<td>591</td>
<td>517</td>
<td>624</td>
</tr>
<tr>
<td>A-5</td>
<td>3.5</td>
<td>78.5</td>
<td>259</td>
<td>225</td>
<td>269</td>
<td>380</td>
<td>468</td>
<td>574</td>
<td>597</td>
<td>589</td>
</tr>
<tr>
<td>A-12</td>
<td>3.5</td>
<td>79.3</td>
<td>434</td>
<td>187</td>
<td>277</td>
<td>409</td>
<td>619</td>
<td>684</td>
<td>780</td>
<td>1019</td>
</tr>
<tr>
<td>A-19-b</td>
<td>3.5</td>
<td>79.9</td>
<td>496</td>
<td>210</td>
<td>230</td>
<td>400</td>
<td>478</td>
<td>533</td>
<td>633</td>
<td>595</td>
</tr>
<tr>
<td>A-20</td>
<td>4</td>
<td>76.8</td>
<td>127</td>
<td>250</td>
<td>205</td>
<td>354</td>
<td>503</td>
<td>519</td>
<td>639</td>
<td>639</td>
</tr>
<tr>
<td>A-6</td>
<td>4</td>
<td>78.9</td>
<td>424</td>
<td>210</td>
<td>316</td>
<td>463</td>
<td>524</td>
<td>814</td>
<td>859</td>
<td>876</td>
</tr>
<tr>
<td>A-13</td>
<td>4</td>
<td>79.7</td>
<td>367</td>
<td>220</td>
<td>283</td>
<td>473</td>
<td>688</td>
<td>708</td>
<td>850</td>
<td>899</td>
</tr>
<tr>
<td>A-7</td>
<td>5</td>
<td>78.1</td>
<td>307</td>
<td>236</td>
<td>369</td>
<td>570</td>
<td>767</td>
<td>950</td>
<td>1151</td>
<td>1310</td>
</tr>
<tr>
<td>A-14</td>
<td>5</td>
<td>78.2</td>
<td>300</td>
<td>230</td>
<td>380</td>
<td>674</td>
<td>992</td>
<td>1097</td>
<td>1379</td>
<td>1764</td>
</tr>
<tr>
<td>A-21</td>
<td>5</td>
<td>78.8</td>
<td>408</td>
<td>230</td>
<td>338</td>
<td>590</td>
<td>802</td>
<td>828</td>
<td>1028</td>
<td>1065</td>
</tr>
</tbody>
</table>

Figure 9—Weak Acid Dissociable Cyanide in CPF mixed with gold tailings (Saw & Villaescusa, 2007)
curing temperature and humidity. For example, CPF mix No. A12 and A14 were placed (unplanned) close to the curing chamber heater. Therefore, mix No. A12 and A14 developed higher strength compared to the mixes with similar cement dosages and higher solids percentage, but cured away from the heater.

Figure 11 shows the average UCS development of CPF mixed with 4% GP cement from three different suppliers A, B and C. The comparison shows that, although it was mixed with slightly higher solids percentage, GP cement B gained slightly less peak strength compared to the others. The peak strengths were similar for GP cement A and C.

Figure 12 shows a strength development comparison for CPF mixed with 4% GP/FA blended cement from three different suppliers A, B and C. It can be seen that, although it was mixed with lower solids percentage, GP/FA blended cement C achieved a significantly higher strength.

Figure 13 shows the strength development of CPF mixed with 4% GP cement A, GP/FA blended cement A, GB slag and portland/slag blended cement. The highest strength development for given cement dosage was observed in CPF using portland/slag blended cement.

Results for Mine B—cemented paste fill (gold mine, Australia)

Mix design parameters
- Fill material: gold tailings
- Water: fresh, salt and blended fresh/salt water
- Binder: general purpose (GP) cement
- Water reducing admixture: 0.4% of binder
- Solid percentage: 72–75%
- Measured Slump: 130–215 mm
- Curing: Temperature 30°C and 90% humidity
- Sample size: 50 × 110 mm (diameter × length)

Uniaxial compressive strength

The UCS development of CPF mixed with fresh and fresh-salt blended water is shown in Figure 14. The data show that a slight difference on strength development was found for mixes having 100% fresh water compared to those having 75% fresh water and salt water. However, a significant strength reduction was found for mixes having a (50:50) ratio of fresh water and salt water.
Results for Mine C—cemented paste fill (gold mine, Indonesia)

Mix design parameters
- Fill material: gold tailings, river sand and tuff
- Water: bore water
- Binder: general purpose (GP) cement
- Solid percentage: 66–71%
- Measured yield stress: 230–393 Pa
- Curing: temperature 30°C and 90% humidity
- Sample size: 50 × 110 mm (diameter × length)

Uniaxial compressive strength
The UCS development of CPF mixed with blended tailings and tuff is presented in Figure 15. The results show that the strength gradually developed in all the mixes. The UCS slightly increased for the CPF mixed with 50% tuff and 50% tailings, and 10% cement. The strength increased significantly after 14 days of hydration, in the sample mixed with 90% tuff and 10% cement (GM-7). The pozzolanic analysis of tuff shows that the total of the three oxides (SiO₂+Al₂O₃+Fe₂O₃) is 84.3%. The SO₃ content is 0.1% and the loss on ignition (LOI) is 4.2%. The free moisture H₂O and available alkalinity are 0.2% and 0.4%, respectively. Therefore, ‘tuff’ used in this research was classified as ‘Class N’ natural pozzolan based on ASTM C 618-a.

Results for Mine D—cemented paste fill (copper mine, Saudi Arabia)

Mix design parameters
- Fill material: cyclone underflow copper tailings
- Water: fresh water
- Binder: general purpose (GP) cement
- Solid percentage: 77–78%
- Measured yield stress: 103–107 Pa
- CPF sample curing: Temperature 30°C and 90% humidity
- Sample size: 50 × 110 mm (diameter × length)

Uniaxial compressive strength
The UCS development with time for this project is shown in Figure 16. Usually, UCS of cemented materials mixed with GP cement become stable at 28 days curing, when the degree of hydration is believed to be more than 90%. In this research, the UCS in all the mixes was found to increase until 56 days of curing. This might be due to the preset of calcium carbonate (CaCO₃) in the tailings, which may increase the amount of hydration products in the long term.

Results for Mine E—cemented hydraulic fill (lead-zinc-silver mine, Australia)

Mix design parameters
- Fill material: zinc tailings
- Water: fresh water
- Binder: 4 to 9%, low heat (LH) cement
- Solid percentage: 76 %
- Curing: temperature 30°C and 90% humidity
- Sample size: 50 × 110 mm (diameter × length)

Uniaxial compressive strength
The strength development of CHF mixed with low heat cement is shown in Figure 17. Generally, the UCS gradually increased with cement dosage and curing time. However, the CHF mixed with 4% and 5% cement showed an increase until 14 days of curing and did not change significantly after it reached its peak strength.

Results for Mine F—cemented aggregate fill (copper-zinc mine, Australia)

Mix design parameters
- Fill material: crushed aggregates maximum size 40 mm with and without sand.
• Water: fresh water
• Binder: 2 to 8% Minecem cement
• Mixing: CAF mixing was achieved by adding water to the blended cement and aggregates. When the cement particles coated the aggregates, adding of water was stopped and the water: cement ratio was calculated. The water and cement ratio ranges from 0.75 to 4.
• Curing: temperature 30°C and 90% humidity
• Sample size: 150 × 300 mm (diameter × length)

\[ \text{Uniaxial compressive strength} \]
Figure 18 shows the strength development with curing time for different mixes. The UCS increased with decreasing water and cement ratio. A higher strength development was observed in the CAF samples mixed with 15% sand addition compared with mixes without sand. The UCS increased significantly in CAF mix J7 (6% cement, 15% sand and w:c ratio 1.44) and J8 (8% cement, 15% sand and w:c ratio 1).

Results for Mine G—Cemented rock fill (gold mine, Australia)

Mix design parameters
• Fill material: 2107 kg/m³, waste rock size less than 2 mm to 300 mm
• Water: mine water
• Binder: 105 kg/m³ (5%) general purpose (GP) cement
• Mixing: a trial mix was done by adding mine water to a blended cement and waste rock. When the cement particles coated the waste rock, adding of water was stopped and the water: cement ratio was calculated. The optimum water and cement ratio for a given waste rock PSD was 2.13.
• Curing: temperature 30°C and 90% humidity
• Sample size: 400 × 800 mm and 500 × 1000 mm (diameter × length)

\[ \text{Uniaxial compressive strength} \]
The uniaxial compressive strength (UCS) for the large scale (800 × 800) and (500 × 1000) mm samples was determined using the recently developed WASM 200 static test machine. The WASM static test machine set up for UCS test is shown in Figure 19. Figure 20 shows UCS development with curing time for different mixes. A higher strength development was observed in the CRF samples of Mix 1 and 3 which contain high percentage of fine particles compared with Mix 2.

Summary of minefill UCS
The UCS development is a function of the type of fill material (tailings, waste rock), cement type, cement dosage, water, solid percentage and water:cement ratio, curing days.
Conclusions

Based on a series of minefill research conducted over the last few years at WASM, the following conclusions can be drawn to provide procedures for the systematic selection and optimization of cost-effective minefill mix design.

- Material characterization is required before starting any minefill operation. The materials include: tailings or waste rock, binder and mixing water. The basic test required to characterize the materials are PSD, SG, bulk density, chemical and mineralogical analysis.
- Based on the PSD analysis results, tailings used in all CPF and CHF optimization research contain about 25–60% passing 20 micron (0.02 mm) and about 15–40% passing 10 microns (0.01 mm). The tailings can be classified as sandy silt (ML) according to the Unified Soil Classification System.
- The weight-volume relations of minefill is determined by its water content, SG, porosity, void ratios and relative density. A variation in water content determination can be a major problem in achieving a required mix design.
- Mine tailings generally contain quartz, feldspar, mica, clay minerals, sulphide minerals and carbonates. Some minerals are not favourable to the cement hydration. The presence of clay minerals (chlorite, illite, and kaolin) and sulphide minerals (pyrite, pyrrhotite) can reduce the strength. However, the presence of carbonate minerals (calcite, dolomite) would increase the strength of minefill for a given cement type and dosage.
- For all minefill types, binder such as cement or natural pozzolans are the main substances for strength development. The percentage of the main binder compound varies from different types and suppliers. A cost-effective with optimum strength mix design can be achieved by selecting or blending the right binder for a given tailings and mixing water.
- Mixing water impurities may cause a strength reduction in any type of minefill. In certain cases, water with impurities can be used for minefill mixing it with fresh water. However, it is important to determine whether the impurities level is acceptable for the strength reduction.
- Correlation of yield stress, with solids percentage and slump is slightly different in different CPF mixes. The variation is mainly caused by different PSD, SG and binder dosages.
- Laboratory test shows that, minefill made with cyanide-bearing tailings contains 1.5 to 2.0 mg/kg of weak acid dissociable (WAD) cyanide and the liberated HCN gas were less than 0.1 mg/kg. Although a possibility exists for HCN gas liberation, the amount appears to be insignificant.
- The required minefill strength is dependent on the mining methods, geometry of orebody and stope, and the possible failure modes. It is specific to each minefill operation. The mechanical properties for the design can be determined by laboratory testing. The most commonly used test is the uniaxial compressive strength (UCS) test.

Acknowledgements

The authors wish to thank Bariq Mining, Barrick Gold of Australia, BHP Billiton, Newcrest Mining, OZ Minerals, Ramelius Resources, St Ives Gold Mining, and Xstrata Nickel Australia for their research funding to WASM.

References

2. GRICE, T. Geomechanics of minefill, Mine Backfill Course Note for Masters of Engineering Science in Mining Geomechanics. Western Australian School of Mines, Curtin University of Technology. 2002.


---

**Hla Aye Saw (Nixon)**

*Senior Research Fellow, Western Australian School of Mines*

Mr. Hla Aye Saw is a senior research fellow and PhD student from Western Australian School of Mines. His current research interests are “Mine backfill strength and deformability” and “The strength of shotcrete”. Prior to joining WASM in March 2005, he worked in Singapore as a geotechnical engineer for 6 years. He obtained his bachelor degree in Geology from University of Yangon, Myanmar and his M.Sc. degree in Geotechnical Engineering from Asian Institute of Technology, Bangkok, Thailand. He is also a certified gemmologist.